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Numerical studies of the process of gravitational precipitation of a cloud of suspended 
particles onto a plane horizontal surface were carried out in [i, 2], assuming plane symmetry. 
Both the motion of the cloud far from the surface (in an infinite medium), as well as the 
precipitation of particles on the surface were studied in detail. In [3] the descent of a 
spherical cloud of monodispersed particles in an infinite incompressible fluid was studied 
numerically, assuming axial symmetry. It is evident from the results of [I-3] that despite 
the different geometry the motion of the cloud in an infinite medium is qualitatively the 
same in the two cases. A cylindrical cloud separates into two symmetric parts, while a spher- 
ical cloud transforms into a ring. In both cases vortex motion is induced in the carrier 
medium. 

On the basis of the equations of the mechanics of a multiphase medium [4] we study numer- 
ically the precipitation of a cloud of suspended particles on a horizontal surface in both the 
plane and axisymmetric cases. A detailed comparison of these two cases is given. 

i. We consider a gas at temperature T o in static equilibrium in the field of gravity. 
At the initial instant of time there is a cloud of solid, monodispersed spherical particles, 
at a height H 0 above a plane horizontal surface. The cloud is initially at rest. We consider 
a cylindrical cloud whose axis is parallel to the horizontal surface (plane symmetrY with the 
symmetry parameter v = 0) or a spherical cloud (axisymmetric problem, v = i). We use the 
plane-symmetric or axisymmetric equations of motion in these two cases. Let r be the radial 
cylindrical coordinate or the horizontal Cartesian coordinate, and let z be the vertical co- 
ordinate, directed oppositely to the field of gravity, where z = 0 is the plane of precipita- 
tion. Then the initial conditions can be written as 

t = 0: U 1 = Us = 0, Pl = pl0exp ( - - g z / R o T o ) ~  

n = no exp [ - - ( ~  t -  ( z -  Ho)2)/R2]~ ( 1 . 1 )  

P2 = Pgngd3/6,  P = R0plT0- 

H e r e  t h e  i n d i c e s  1 a n d  2 r e f e r  t o  t h e  g a s  a n d  p a r t i c l e s ,  r e s p e c t i v e l y ;  t i s  t h e  t i m e ;  U i ( u i , v i ~  
P i  ( i  = 1 . 2 )  i s  t h e  a v e r a g e  v e l o c i t y  a n d  d e n s i t y  o f  t h e  p h a s e s ;  n i s  t h e  c o n c e n t r a t i o n  o f  
p a r t i c l e s ;  g i s  t h e  a c c e l e r a t i o n  o f  g r a v i t y ;  R 0 i s  t h e  u n i v e r s a l  g a s  c o n s t a n t ;  p2 ~ and  d a r e  
t h e  i n t r i n s i c  d e n s i t y  and  d i a m e t e r  o f  a p a r t i c l e ;  P l0  i s  t h e  i n i t i a l  d e n s i t y  o f  t h e  g a s  n e a r  
t h e  s u r f a c e  o f  p r e c i p i t a t i o n  H 0 a n d  R a r e  t h e  i n i t i a l  h e i g h t  o f  t h e  c l o u d  a n d  i t s  r a d i u s ;  p 
i s  t h e  p r e s s u r e  o f  t h e  g a s ,  w h i c h  i s  a s s u m e d  t o  b e  i d e a l ;  n o i s  t h e  maximum c o n c e n t r a t i o n  o f  
p a r t i c l e s  t o  t = 0.  

We c o n s i d e r  a s u s p e n s i o n  w i t h  a s m a l l  v o l u m e  f r a c t i o n  o f  p a r t i c l e s  ( 5 1 0 - ~ ) ,  w h i c h  means  
t h a t  we c a n  n e g l e c t  c o l l i s i o n s  b e t w e e n  t h e  p a r t i c l e s  a n d  a l s o  t h e  t o t a l  v o l u m e  o f  t h e  p a r t i c l e s .  
F r a g m e n t a t i o n  a n d  e v a p o r a t i o n  o f  p a r t i c l e s  a r e  i n s i g n i f i c a n t ,  a n d  a r e  n o t  c o n s i d e r e d  h e r e .  
H e a t i n g  o f  t h e  med ium d u e  t o  v i s c o u s  d i s s i p a t i o n  o f  e n e r g y  i s  s m a l l ,  a n d  t h e r e f o r e  t h e  p r e -  
c i p i t a t i o n  c a n  b e  a s s u m e d  t o  be  an  i s o t h e r m a l  p r o c e s s .  H e n c e  t h e  t e m p e r a t u r e  o f  t h e  g a s  and  
p a r t i c l e s  r e m a i n s  c o n s t a n t  a t  t h e  i n i t i a l  v a l u e  T O . 

The  p l a n e  o r  a x i s y m m e t r i c  m o t i o n  o f  t h e  s u s p e n s i o n  i s  d e s c r i b e d  by  t h e  f o l l o w i n g  e q u a -  
t i o n s ,  w r i t t e n  i n  t e r m s  o f  d i m e n s i o n l e s s  v a r i a b l e s :  

dt = -- P1s jFr + az / - -  - -  

dlul Op i [ 4 a~ul a~u, 
Pl-Tf- =--Eu-~-~ +~-~L-/-6~+ a~2 +---- 

~PlUl �9 
P = Pl, 

r 
(1.2) 
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P~--~---- Pl +  L777+-  0z --Y 3 OrOz-}-r \Or  +vw)j-s:; 
d2P2 ( auu_2 Ov2 ~ wP2u2, _ d2u2 d2v 2 
dt = - -  P2 \ Or ~- 8z ] r P2 - ~ -  = ]~, P2 df P2 -F ]z; ( 1 . 3  ) 

d l  0 u. 00_ 0 
dt - -  Ot + ~ Or + vi-~f~ E u = R o T o / R g ,  R e = R ~ p l 0 / ~ ,  ( 1 . 4 )  

where we u se  c h a r a c t e r i s t i c  s c a l e s  o f  l e n g t h ,  t i m e ,  v e l o c i t y ,  d e n s i t y ,  p r e s s u r e ,  and c o n c e n -  
t r a t i o n  g i v e n  by R, ~ RC~g, P l0 ,  R0pl0T0,  no;  Eu and Re a r e  t h e  E u l e r  and Reyno lds  numbers ;  
q i s  t h e  d y n a m i c a l  v i s c o s i t y .  The exchange  t e rm f ( f r ,  f z )  d e s c r i b e s  t h e  i n t e r a c t i o n  between 
t h e  two p h a s e s  a n d h a s  t h e  form 

f plp  (1 + 0,:t5s ( c ,  - ( 1 . 5 )  

R% = Regp i ig  1 -- U 2 I~ Re~ = d ~ Pi0/~ ~r = P~d~/t8~ ~R-g- 

Here Re~ i s  t h e  i n s t a n t a n e o u s  Reyno lds  number o f  a p a r t i c l e ;  Rep ~ i s  t h e  Reyno lds  number o f  a 
p a r t i c l ~  c o n s t r u c t e d  f rom t h e  c h a r a c t e r i s t i c  v e l o c i t y  o f  c o n v e c t i o n ;  ~r i s  t h e  d i m e n s i o n l e s s  
v e l o c i t y  r e l a x a t i o n  t ime  o f  t h e  p a r t i c l e s ,  c a l c u l a t e d  in  t h e  S t o k e s  a p p r o x i m a t i o n .  In  ( 1 . 5 )  
we have  used  an e m p i r i c a l  r e l a t i o n  be tween t h e  d rag  c o e f f i c i e n t  o f  a p a r t i c l e  and i t s  Reyno lds  
number which  c l o s e l y  a p p r o x i m a t e s  t h e  e x p e r i m e n t a l  c u r v e  in  t h e  r e g i o n  0 5 Rep ~ 700. Here 
we c o n s i d e r  i n s t a n t a n e o u s  R e y n o l d s  numbers o f  o r d e r  10 2 , which  f a l l  o u t s i d e  o f  t h e  r e g i o n  o f  
a p p l i c a b i l i t y  o f  S t o k e s '  law. T h e r e f o r e  t h e  r e l a x a t i o n  t ime  i s  s e v e r a l  t i m e s  s m a l l e r  t h a n  ~r" 

The b o u n d a r y  c o n d i t i o n s  t a k e  i n t o  a c c o u n t  t h e  symmetry o f  t h e  p rob lem w i t h  r e s p e c t  t o  
the plane (or the axis) r = O, static equilibrium of the gas at infinity and the "no-slip" 
condition of the gas at the surface of precipitation: 

r = 0: u~ = u~ = 0,  Ov~/~r = O, OpllOr = 0; ( 1 . 6 )  

r ~ -}- z 2--~ oo: U 1 = O~ Op/Oz = --pl /Eu;  z = 0 : U 1  = 0. 

Collisions of the particles with the surface are assumed to be perfectly inelastic, such that 
all particles reaching the surface stay there. 

The initial conditions (i.I) are written in dimensionless form 

t = 0 : U 1  = U2 = 0, Pl = exp (--z/Eu), p = Pl, 

n = exp [ - - (~  + (z - -  H)2)]; p~ = M21n, ( 1 . 7 )  

H = H o / R  , M21 = ~d3p~no/6plo, 

where H is the dimensionless initial height of the cloud; M21 is the ratio of the initial mean 
density of particles at the center of the cloud to the initial gas density near the surface 
of precipitation. For a cloud of radius 1 m in air at normal conditions, Re ~ 105 , which 
corresponds to the generation of turbulence. We use a smoothed description of turbulent motion 
by introducing an effective turbulent viscosity (see pg. 292 of [5]). But the drag force of 
an individual particle is calculated using the molecular viscosity, since the quantity Rep ~ 
is within the region of applicability of the empirical function for the drag coefficient used 
here (for example Rep ~ ~ I0 for a particle with d = i00 ~m and the conditions described above). 
Hence Re and Rep ~ are independent parameters. 

The calculations were performed using the constant values Eu = 103 , Re = 30, Rep ~ = 400. 
The other parameters were varied within the following limits: M21 = 0.01-3, mr = 0.5-2, 

H = 2-12. 

The problem specified by (1.2) through (1.7) was solved numerically by a finite-differ- 
ence method using the method of [6] for the equations of motion of the gas and the longitudi- 
nal-transverse scheme of [7] for the equations of motion of the particles. A nonuniform 
20 x 40 grid was used with an increased density of grid points near the coordinate axes. 
The Courant number, constructed from the speed of sound and the minimum grid stepsize, was 
equal to 4. The execution time of a run was 2 to 3 hours on the ES-I055 computer. A de- 
tailed description of the numerical methods used can be found in [i, 8]. 

2. We consider first the evolution of the cloud up to the time at which the effect of 
the surface of precipitation begins to be felt (we assume an infinite medium). If the mass 
fraction of particles is large enough they can interact hydrodynamically through the carrier 
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medium. Gas is dragged downward by the falling particles and a large-scale vortex motion 
results. As a result, the rate of fall of the cloud of suspended particles exceeds the rate 
of fall of a single isolated particle in the same medium (the entrainment regime of the cloud). 
Since the degree of which the gas is dragged into the motion is determined by parameters 
which do not depend on the geometry of the problem, the range of parameters for which the en- 
trainment regime is realized will be the same for the plane-symmetric and axisymmetric cases. 
This region of parameter space was determined by solving the plane-symmetric problem in [i, 2]. 
Below we consider only the entrainment regime, since motion of the cloud with small hydrody- 
namic interaction of particles (the filtration regime) reduces to finding the motion of a 
single particle, and was studied in detail in [9]. 

The evolution of the falling cloud of suspended particles is shown in Fig. 1 for the 
plane-symmetric and axisymmetric cases. Figure 1 shows the curves of equal concentration of 
particles in the cloud and the velocity vectors of the gas for a typical run (M21 = 0.5, 
~r = i) for the times t = 1.86; 13.96; 7.45 (curves a through c). Here, as in Fig. 2, the 
field for the axisymmetric problem is shown on the left and that for the plane-symmetric prob- 
lem is shown on the right. The values of the concentration on neighboring contours differ 
by 0.2, and n = 0.2 on the outermost contour. The velocity scale is specified in the figures. 

It is evident that the qualitative picture of the evolution is identical in the two cases: 
the downward motion of the particles causes a vortex motion, which at first transforms the 
cloud into eL "bowl-like" shape (Fig. ib) and then the cloud is drawn out along the horizontal, 
and hence the maximum concentration of particles is displaced from the axis (plane) of sym- 
metry in the transverse direction (Fig. ic). The initial cylindrical cloud breaks up into 
two symmetric parts (plane symmetry) and the initial spherical cloud condenses into a ring 
(axial symmetry). The distinguishing features of the axisymmetric case are the large rate of 
fall of the cloud and the sharper concentration gradient of particles in the cloud during its 
precipitation. 

3. We consider now the precipitation of the cloud of particles on the horizontal sur- 
face. Typical examples of this process are shown in Fig. 2 for axial and plane symmetry, 
where the velocity field of the gas and the lines of constant concentration of particles of the 
precipitating cloud (M21 = 0.3, ~r = 1, H = 3.26) are shown at the times t = 3.41; 6.82; 10.22 
(a through c). We see that precipitation proceeds in an identical way for the two cases. The 
vortex motion of the carrier medium induced by the motion of the cloud (a) drags along par- 
ticles in the transverse directions (b, c), which leads to a scattering of particles along the 
surface of precipitation. As a result, in some cases the final distribution of surface con- 
centration of precipitated particles has a local minimum at r = 0, and a significant fraction 
of particles: fall outside of the region defined by the initial projection of the cloud onto 
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the surface. This effect was treated quantitatively in [i, 2] by introducing a scattering 
coefficient for the cloud of particles equal to the fraction of particles falling outside of 
initial projection of the cloud onto the surface. 

The dependence of the scattering coefficient on the parameters of the problem is shown 
in Fig. 3 for the plane-symmetric (dashed curves) and axisymmetric (solid curves) cases. 

When the height of the cloud increases, the scattering of particles on the surface below 
also increases in both the plane-symmetric and axisymmetric cases (curve i, M21 = i, ~r = i). 
The higher the initial height of the cloud, the greater the quantity of gas dragged into the 
induced vortex flow. Hence the transverse transportof particles is enhanced, and this in- 
creases their scattering. 

An increase in the velocity relaxation time ~r of a particle leads to a decrease in the 
scattering coefficient of the cloud of particles on the surface, independent of the symmetry 
of the problem (curve 2, M21 = i, H = 3.26). This can be explained by the fact that the pa- 
rameter ~r characterizes the "coupling" of the phases; the smaller this quantity, the more 
rapidly the particles are carried along by the carrier medium. 

The dependence of the scattering coefficient on the parameter M21 , which is proportional 
to the initial concentration of particles in the cloud, shows a maximum. The maximum is pro- 
nounced for the axisymmetric case (curve 3 with ~r = i, H = 3.26). For small values of M21 
the cloud collapses in a manner similar to the filtration regime. In this case the scatter- 
ing coefficients of the cloud are quite small for both geometries and differ from one another 
insignificantly. When the concentration of particles increases, their hydrodynamic interac- 
tion also increases, and this leads to large-scale vortex motion as the cloud falls. Hence 
the scattering coefficient increases. When the concentration of particles is increased fur- 
ther (M21Z i) the rate of fall of the cloud becomes so large that the induced vortex flow 
becomes incapable of transporting particles in a significant distance in the transverse direc- 
tion and the scattering of particles begins to decrease. 

We note that the scattering of particles is larger in the axisymmetric case than in the 
plane-symmetric case, for the same parameters of the cloud. For the ranges of the parameters 
considered here, the largest difference in the scattering coefficients is 0.i. Our study 
shows that it is possible to approximately convert theoretical and experimental data on the 
precipitation of a spherical cloud to the precipitation of a cloud in the plane-symmetric 
case, and vice versa. Here it is necessary to satisfy the similarity criteria introduced 
above. 

The author thanks A. N. Kraiko for useful discussions. 
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STRUCTURE OF A COMPRESSION SHOCK IN TWO-PHASE MEDIA 

A. M. Grishin and G. G. Tivanov UDC 532.529:518.5 

Shockwaves originating in supersonic two-phase flows can be considered to consist of two 
zones - the compression shock that is realized at the shock velocity greater than the frozen 
speed of sound [i, 2], and the relaxation zone. Although the structure of the relaxation zone 
has been investigated in sufficient detail [1-5], the structure of the compression shock has 
not. 

It is generally understood that a lifting medium is described by Hugoniot relationships 
during passage through a shock, while particles "ignore" the compression shock. Meanwhile, 
experimental data [3] display a sufficiently strong influence of the compression shock on 
heterogeneous inclusions if the particle size does not exceed 20-25 l~m. 

For sufficiently intensive shocks, shocks originate in the domain with as large as a two- 
phase medium flows around a solid boundary, where the stream parameters change substantially 
within distances commensurate with the dimensions of the inclusions. Models of a continuous 
medium do not hold in these zones and the structure of such flows can be investigated only 
within the framework of kinetic theory [6]. On the other hand , for a weak shock intensity the 
thickness of the compression shock can exceed the dimensions of the inclusions by an order and 
more, which permits utilization of the approximation of a continuous medium to investigate the 
compression shock structure. 

Here we consider the structure of a compression shock by using the kinetic and hydrody- 
namic descriptions of a two-phase medium. It is shown that the presence of particles results 
in an increase in the compression shock thickness, where the particles exert the greatest in- 
fluence on the density and velocity profiles. It is found that taking account of the dissipa- 
tive components on both the kinetic and the hydrodynamic level broadens the limits of applic- 
ability of these approaches somewhat. 

i. Since a compression shock especially influences fine particles, for simplicity in 
our analysis we shall henceforth limit ourselves to a study of small size inclusions (not more 
than i0 ~m, for instance), which permits utilization of the diffusion approximation in indi- 
vidual cases. 

We consider a two-phase medium as a dynamic system of interacting particles. We write 
the kinetic ~squations for the particles of each phase (subscripts i, j) in the form 

Dli/Dt = Q(]i, b).  (1.1) 

Here Q is th,~ interaction integral, and f(t, x, v) is the particle distribution function of 
one phase. 

Two interaction scales, short-range and sliding collisions, can be separated for an anal- 
ysis of Q in application to a two-phase mixture [7]. For the short-range Collision, direct 
contact occurs between two (or more) particles with an exchange of mass, momentum, and energy. 
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